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Human emissions of carbon dioxide

Emissions in billion tonnes of CO, (= GtCO,, PgCO,, 10%> gCO,)

40 Gt

Global Fossil CO, Emissions

CO, 2010-17
+1 .O%/yr Projection 2018
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http://www.globalcarbonproject.org/carbonbudget/



Resulting rise in atmospheric CO,

Mauna Loa, Hawaii, United States (MLO)
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Compares to 280 ppmV before human activity
And 200 ppmV during the last ice age

http://www.esrl.noaa.gov/gmd/dv/iadv/
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2016 Mean Annual Temperature (relative to 1880-1920)

Centigrade



We can choose our future temperature

Stop releasing CO, Carry on as we are
RCP 2.6 RCP 8.5

(a) Change in average surface temperature (1986-2005 to 2081-2100)
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Paris COP21 agreement

Agreed to limit warming to substantially less than
2°C (1.5°C target)

Peak in global emissions asap, rapid reductions
thereafter

Net zero emissions in 2"? half of this century
Countries submitted national climate action plans

Meet every 5 years to and set more ambitious
targets

PARIS2015

CONFERENCE DES NATIONS UNIES
SUR LES CHANGEMENTS CLIMATIQUES

COP21-CMP11
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Why we need to reach net zero

More than half of the CO, stays in atmosphere for thousands of years
So cumulative emission is critical

| I I
Annual CO, emissions

- = NN W W
S L O W

O L O n

Annual CO, emissions (GtC/y)

|
(V]

—— RCP2.6

—— RCP4.5
RCP6.0

e RCP8.5
RCP range

Historical 1850-2011

0 500 1000 1500

2000

Cumulative total anthropogenic CO, emissions from 1850 (Gt C)

2500












Integrated Assessment Models

: Future emission scenarios

Data: CDIAC/GCP/IPCC/Fuss et al 2014
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Integrated Assessment Models

: Future emission scenarios
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At the time of Paris Agreement
87% of 2°C scenarios and 100% of 1.5°C scenarios use some greenhouse

gas removal (GGR)
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A UK perspective in 3 reports

i. UK Clean Growth Strategy
Autumn 2017

From key policies and proposals

“Develop our strategic approach to
greenhouse gas removal
technologies.... addressing the
barriers to their long term

deployment.”



A UK perspective in 3 reports

Greenhouse
gas removal

ii. Report to BEIS on GGR
September 2018

UK scenario indicated that the UK
could realize sufficient GGR to
balance residual emissions of
greenhouse gases to make the UK
net zero in 2050

THE ROYAL
ROYAL ACADEMY OF
SOCIETY ENGINEERING

Y ROYAL

ACADEMY OF
ENGINEERING




A UK perspective in 3 reports

Net Zero

The UK's contribution to
C Stoppmgg'oba' R iii. Committee for Climate
woats Change Net Zero Report
May 2019

“The UK should set and vigorously
pursue an ambitious target to
reduce greenhouse gas emissions
(GHGs) to 'net-zero' by 2050”

UK law changed in June 2019

requiring England to be net zero by
2050
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GGR methods: Must both remove and store CO,

THE

ROYAL

SOCIETY Greenhouse gas removal method
Increased biological Natural inorganic Engineered removal
uptake reactions

Land vegetation | Afforestation, reforestation
(living) and forest management;

Habitat restoration;

Soils and land Soil carbon sequestration; Enhanced terrestrial

S vegetation (dead) Biochar weathering

2

5 Geological BECCS Mineral carbonation  DAC + geological

o at surface storage

= DAC + sub-surface

n mineral carbonation
Oceans Ocean fertilisation Ocean alkalinity DAC + deep ocean

storage

Built Building with biomass Low-carbon concrete

environment
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Reforestation

Photosynthesis:
6CO, + 6H,0 - C,H,,0O, + 60,




Growing forests is good but...

There is only so much space to put them
Need to be careful they don’t have other negative impacts

FIGURE 4

Distribution of potential GGR by reforestation by country.

KEY

B Reforestation extent kgCO,e ha'yr' [ O 1—21 212 -758 | 759 -1749

[l 750-3000 [3.001-7700 [ ] No mitigation (Boreal zone)
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Bioenergy with Carbon Capture and Storage (BECCS)

Carbon dioxide
bmd Mineral carbonation

Carbon dioxide

Low-carbon concrete

Geological reservoir

B ‘\\ 3:\/ ,; }é? “t /}\

epe . . . RNV SE r\\\:\‘! \
Utilising biomass for energy, capturing #i j{l‘ AR

the CO, emissions and storing them N

to provide lifecycle GGR
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Building with Biomass

Carbon dioxide

Using forestry materials in building extends the
time of carbon storage of natural biomass and

enables additional forestry growth
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GGR methods: Must both remove and store Co,

Land vegetation
(living)

Soils and land
vegetation (dead)

Geological
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Oceans

Built
environment

Greenhouse gas removal method

Increased biological Natural inorganic Engineered removal
uptake reactions

Afforestation, reforestation
and forest management;

Habitat restoration:;

Soil carbon sequestratiogf’  Enhanced terrestrial

Biochar Weathering
BECCS Mineral carbonation  DAC + geological
at surface storage
DAC + sub-surface
mineral carbonation
Ocean fertilisation Ocean alkalinity DAC + deep ocean
storage
Building with biomass Low-carbon concrete



Enhanced Terrestrial Weathering

CaSiO, + 2CO, + H,0 > Ca?* + 2HCO," + SiO,
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Ground silicate rocks spread on
agricultural land react with CO,
to remove it from the atmosphere




Positive need to add silicate to some soils




Grinding up silicates uses huge amounts of energy




But we have already done a lot of grinding

Mine tailings as a source of silicates
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Direct Air Capture and Carbon Storage (DACCS)

Carbon dioxide

bmd Mineral carbonation

Vv v v
@%@ Carbon diovide AN

Geological reservoir

Using engineered processes to capture
atmospheric CO, for subsequent
geological storage







The UK as a case
study

Can the UK reach
net zero emissions




Possible to use suite of GGR to balance recalcitrant UK emissions

KEY
Not yet Ready for deployment
demonstrated @ rorestation
at scale Ready for

deployment @ Habitat restoration

@® Soilcarbon sequestration

] Building with biomass
@ Low carbon concrete

Not yet demonstrated at scale
Biochar

Enhanced terrestrial

weathering
Requiring CCS
L @® Bcccs
Requiring
cCS @® DACCS

THE

ROYAL

SOCIETY

Note absence of oceanic approaches



How about NZ?




4 (THE THI
1 ," {HANGE




C A Time 4 R : L 9% A g ‘
o S 7 Thegeren "‘ﬁ’ ate s Wh
- ‘ ’ f THIS g'L'JERES L EUT WA at ' S FOF
PlAth’Af ‘ 1. :

IS W 2 FuTuRE TR

lSt )(\ST




NEW ZEALAN D'S Source: New Zealand's

Greenhouse Gas Inventory

Greenhouse Gas Emissions 1990-2017, published

April 2019
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NEW ZEALAN D'S Source: New Zealand's

Greenhouse Gas Inventory

Greenhouse Gas Emissions 19702017, published
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NEW ZEALAN D'S Source: New Zealand's

Greenhouse Gas Inventory

Greenhouse Gas Emissions 530208k
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New Zealand Emissions per sector 2017

kt CO,-equivalent
-30,000 -15,000 0 15,000 30,000 45,000 60,000 75,000 90,000

Waste 4,124 .7 kt

CO,-e (5%)
v

Tokelau
2.86 kt
LULUCF Agriculture 38,880.7 32 87§%e:(g¥:0 CO.-e
kt CO,-e (48%) B0 K L0 . h
(41%) (.004%)

‘ IPPU 4,968.6 kt CO,-e

(6%)

i.e. new forests

NZ GHG Inventory






Emissions from fossil fuels

If money makes the world go around

Scenario categories

1001 >1000 ppm CO,eq
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Global Fossil CO, Emissions

CO:

35 4

30 1

1990-2000
+1.1%l/yr
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+1.0%l/yy

1990 1995 2000 2005 2010
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Projection 2018

37.1 Gt CO,

A 2.7% (1.8%—3.7%)

2100

Median GGR in scenarios meeting
1.5°C is 810 Gt CO, by end of century

So, 10 Gt CO, per year

At USS50 per tonne (e.g. 45Q bill in
the USA)

= USS 0.5 trillion per year

10 GtCO2 = % of present emissions

Global oil/gas market = USS2 trillion

% of USS2.0 trillion
= USS$0.5 trillion per year



Summary Comments

Removal of CO, from the atmosphere is required to meet climate targets
agreed internationally at Paris, and to avoid dangerous climate change, in
addition to stringent cuts in emissions

CO, removal can be achieved by approaches relying on biology,
accelerated natural inorganic reactions, or engineered removal

Even in land-constrained Britain, it is possible to reach net-zero
emissions by using CO, removal to compensate for recalcitrant emissions

The same will be true for New Zealand, but will need planning, and
consideration of new approaches to CO, removal

This will not be cheap, but there will be money to be made

We all have a part to play in realising net zero emissions and protecting
our planet for future generations



He waka eke noa
A canoe which we are all in with no exception




